
2024/05/03 00:10 1/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

How To Set Up an OpenVPN Server on Debian 9

How To Set Up an OpenVPN Server on Debian 9

Introduction

Want to access the Internet safely and securely from your smartphone or laptop when connected to
an untrusted network such as the WiFi of a hotel or coffee shop? A Virtual Private Network (VPN)
allows you to traverse untrusted networks privately and securely as if you were on a private network.
The traffic emerges from the VPN server and continues its journey to the destination.

When combined with HTTPS connections, this setup allows you to secure your wireless logins and
transactions. You can circumvent geographical restrictions and censorship, and shield your location
and any unencrypted HTTP traffic from the untrusted network.

OpenVPN is a full-featured, open-source Secure Socket Layer (SSL) VPN solution that accommodates a
wide range of configurations. In this tutorial, you will set up an OpenVPN server on a Debian 9 server
and then configure access to it from Windows, macOS, iOS and/or Android. This tutorial will keep the
installation and configuration steps as simple as possible for each of these setups.

Prerequisites

To complete this tutorial, you will need access to a Debian 9 server to host your OpenVPN service.
You will need to configure a non-root user with sudo privileges before you start this guide. You can
follow our Debian 9 initial server setup guide to set up a user with appropriate permissions. The linked
tutorial will also set up a firewall, which is assumed to be in place throughout this guide.

Additionally, you will need a separate machine to serve as your certificate authority (CA). While it’s
technically possible to use your OpenVPN server or your local machine as your CA, this is not
recommended as it opens up your VPN to some security vulnerabilities. Per the official OpenVPN
documentation, you should place your CA on a standalone machine that’s dedicated to importing and
signing certificate requests. For this reason, this guide assumes that your CA is on a separate Debian
9 server that also has a non-root user with sudo privileges and a basic firewall.

Please note that if you disable password authentication while configuring these servers, you may run
into difficulties when transferring files between them later on in this guide. To resolve this issue, you
could re-enable password authentication on each server. Alternatively, you could generate an SSH
keypair for each server, then add the OpenVPN server’s public SSH key to the CA machine’s
authorized_keys file and vice versa. See How to Set Up SSH Keys on Debian 9 for instructions on how
to perform either of these solutions.

When you have these prerequisites in place, you can move on to Step 1 of this tutorial.

Step 1 — Installing OpenVPN and EasyRSA

To start off, update your VPN server’s package index and install OpenVPN. OpenVPN is available in
Debian’s default repositories, so you can use apt for the installation:

https://www.digitalocean.com/community/tutorials/how-to-set-up-an-openvpn-server-on-debian-9

2024/05/03 00:10 2/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

sudo apt update sudo apt install openvpn OpenVPN is a TLS/SSL VPN. This means that it utilizes
certificates in order to encrypt traffic between the server and clients. To issue trusted certificates, you
will set up your own simple certificate authority (CA). To do this, we will download the latest version of
EasyRSA, which we’ll use to build our CA public key infrastructure (PKI), from the project’s official
GitHub repository.

As mentioned in the prerequisites, we will build the CA on a standalone server. The reason for this
approach is that, if an attacker were able to infiltrate your server, they would be able to access your
CA private key and use it to sign new certificates, giving them access to your VPN. Accordingly,
managing the CA from a standalone machine helps to prevent unauthorized users from accessing
your VPN. Note, as well, that it’s recommended that you keep the CA server turned off when not being
used to sign keys as a further precautionary measure.

To begin building the CA and PKI infrastructure, use wget to download the latest version of EasyRSA
on both your CA machine and your OpenVPN server. To get the latest version, go to the Releases
page on the official EasyRSA GitHub project, copy the download link for the file ending in .tgz, and
then paste it into the following command:

wget -P ~/ https://github.com/OpenVPN/easy-rsa/releases/download/v3.0.4/EasyRSA-3.0.4.tgz Then
extract the tarball:

cd ~ tar xvf EasyRSA-3.0.4.tgz You have successfully installed all the required software on your server
and CA machine. Continue on to configure the variables used by EasyRSA and to set up a CA
directory, from which you will generate the keys and certificates needed for your server and clients to
access the VPN.

Step 2 — Configuring the EasyRSA Variables and Building the CA

EasyRSA comes installed with a configuration file which you can edit to define a number of variables
for your CA.

On your CA machine, navigate to the EasyRSA directory:

cd ~/EasyRSA-3.0.4/ Inside this directory is a file named vars.example. Make a copy of this file, and
name the copy vars without a file extension:

cp vars.example vars Open this new file using your preferred text editor:

nano vars Find the settings that set field defaults for new certificates. It will look something like this:

~/EasyRSA-3.0.4/vars . . .

#set_var EASYRSA_REQ_COUNTRY “US” #set_var EASYRSA_REQ_PROVINCE “California” #set_var
EASYRSA_REQ_CITY “San Francisco” #set_var EASYRSA_REQ_ORG “Copyleft Certificate Co” #set_var
EASYRSA_REQ_EMAIL “me@example.net” #set_var EASYRSA_REQ_OU “My Organizational Unit”

. . . Uncomment these lines and update the highlighted values to whatever you’d prefer, but do not
leave them blank:

~/EasyRSA-3.0.4/vars . . .

set_var EASYRSA_REQ_COUNTRY “US” set_var EASYRSA_REQ_PROVINCE “NewYork” set_var

https://github.com/OpenVPN/easy-rsa/releases/download/v3.0.4/EasyRSA-3.0.4.tgz

2024/05/03 00:10 3/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

EASYRSA_REQ_CITY “New York City” set_var EASYRSA_REQ_ORG “DigitalOcean” set_var
EASYRSA_REQ_EMAIL “admin@example.com” set_var EASYRSA_REQ_OU “Community”

. . . When you are finished, save and close the file.

Within the EasyRSA directory is a script called easyrsa which is called to perform a variety of tasks
involved with building and managing the CA. Run this script with the init-pki option to initiate the
public key infrastructure on the CA server:

./easyrsa init-pki Output . . . init-pki complete; you may now create a CA or requests. Your newly
created PKI dir is: /home/sammy/EasyRSA-3.0.4/pki After this, call the easyrsa script again, following it
with the build-ca option. This will build the CA and create two important files — ca.crt and ca.key —
which make up the public and private sides of an SSL certificate.

ca.crt is the CA’s public certificate file which, in the context of OpenVPN, the server and the client use
to inform one another that they are part of the same web of trust and not someone performing a
man-in-the-middle attack. For this reason, your server and all of your clients will need a copy of the
ca.crt file. ca.key is the private key which the CA machine uses to sign keys and certificates for
servers and clients. If an attacker gains access to your CA and, in turn, your ca.key file, they will be
able to sign certificate requests and gain access to your VPN, impeding its security. This is why your
ca.key file should only be on your CA machine and that, ideally, your CA machine should be kept
offline when not signing certificate requests as an extra security measure. If you don’t want to be
prompted for a password every time you interact with your CA, you can run the build-ca command
with the nopass option, like this:

./easyrsa build-ca nopass In the output, you’ll be asked to confirm the common name for your CA:

Output . . . Common Name (eg: your user, host, or server name) [Easy-RSA CA]: The common name is
the name used to refer to this machine in the context of the certificate authority. You can enter any
string of characters for the CA’s common name but, for simplicity’s sake, press ENTER to accept the
default name.

With that, your CA is in place and it’s ready to start signing certificate requests.

Step 3 — Creating the Server Certificate, Key, and Encryption Files

Now that you have a CA ready to go, you can generate a private key and certificate request from your
server and then transfer the request over to your CA to be signed, creating the required certificate.
You’re also free to create some additional files used during the encryption process.

Start by navigating to the EasyRSA directory on your OpenVPN server:

cd EasyRSA-3.0.4/ From there, run the easyrsa script with the init-pki option. Although you already ran
this command on the CA machine, it’s necessary to run it here because your server and CA will have
separate PKI directories:

./easyrsa init-pki Then call the easyrsa script again, this time with the gen-req option followed by a
common name for the machine. Again, this could be anything you like but it can be helpful to make it
something descriptive. Throughout this tutorial, the OpenVPN server’s common name will simply be
“server”. Be sure to include the nopass option as well. Failing to do so will password-protect the
request file which could lead to permissions issues later on:

2024/05/03 00:10 4/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

Note: If you choose a name other than “server” here, you will have to adjust some of the instructions
below. For instance, when copying the generated files to the /etc/openvpn directory, you will have to
substitute the correct names. You will also have to modify the /etc/openvpn/server.conf file later to
point to the correct .crt and .key files.

./easyrsa gen-req server nopass This will create a private key for the server and a certificate request
file called server.req. Copy the server key to the /etc/openvpn/ directory:

sudo cp ~/EasyRSA-3.0.4/pki/private/server.key /etc/openvpn/ Using a secure method (like SCP, in our
example below), transfer the server.req file to your CA machine:

scp ~/EasyRSA-3.0.4/pki/reqs/server.req sammy@your_CA_ip:/tmp Next, on your CA machine,
navigate to the EasyRSA directory:

cd EasyRSA-3.0.4/ Using the easyrsa script again, import the server.req file, following the file path
with its common name:

./easyrsa import-req /tmp/server.req server Then sign the request by running the easyrsa script with
the sign-req option, followed by the request type and the common name. The request type can either
be client or server, so for the OpenVPN server’s certificate request, be sure to use the server request
type:

./easyrsa sign-req server server In the output, you’ll be asked to verify that the request comes from a
trusted source. Type yes then press ENTER to confirm this:

You are about to sign the following certificate. Please check over the details shown below for
accuracy. Note that this request has not been cryptographically verified. Please be sure it came from
a trusted source or that you have verified the request checksum with the sender.

Request subject, to be signed as a server certificate for 3650 days:

subject=

 commonName = server

Type the word 'yes' to continue, or any other input to abort.

Confirm request details: yes

If you encrypted your CA key, you’ll be prompted for your password at this point.

Next, transfer the signed certificate back to your VPN server using a secure method:

scp pki/issued/server.crt sammy@your_server_ip:/tmp Before logging out of your CA machine, transfer
the ca.crt file to your server as well:

scp pki/ca.crt sammy@your_server_ip:/tmp Next, log back into your OpenVPN server and copy the
server.crt and ca.crt files into your /etc/openvpn/ directory:

sudo cp /tmp/{server.crt,ca.crt} /etc/openvpn/ Then navigate to your EasyRSA directory:

cd EasyRSA-3.0.4/ From there, create a strong Diffie-Hellman key to use during key exchange by
typing:

2024/05/03 00:10 5/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

./easyrsa gen-dh This may take a few minutes to complete. Once it does, generate an HMAC signature
to strengthen the server’s TLS integrity verification capabilities:

sudo openvpn –genkey –secret ta.key When the command finishes, copy the two new files to your
/etc/openvpn/ directory:

sudo cp ~/EasyRSA-3.0.4/ta.key /etc/openvpn/ sudo cp ~/EasyRSA-3.0.4/pki/dh.pem /etc/openvpn/
With that, all the certificate and key files needed by your server have been generated. You’re ready to
create the corresponding certificates and keys which your client machine will use to access your
OpenVPN server.

Step 4 — Generating a Client Certificate and Key Pair

Although you can generate a private key and certificate request on your client machine and then send
it to the CA to be signed, this guide outlines a process for generating the certificate request on the
server. The benefit of this is that we can create a script which will automatically generate client
configuration files that contain all of the required keys and certificates. This lets you avoid having to
transfer keys, certificates, and configuration files to clients and streamlines the process of joining the
VPN.

We will generate a single client key and certificate pair for this guide. If you have more than one
client, you can repeat this process for each one. Please note, though, that you will need to pass a
unique name value to the script for every client. Throughout this tutorial, the first certificate/key pair
is referred to as client1.

Get started by creating a directory structure within your home directory to store the client certificate
and key files:

mkdir -p ~/client-configs/keys Since you will store your clients’ certificate/key pairs and configuration
files in this directory, you should lock down its permissions now as a security measure:

chmod -R 700 ~/client-configs Next, navigate back to the EasyRSA directory and run the easyrsa
script with the gen-req and nopass options, along with the common name for the client:

cd ~/EasyRSA-3.0.4/ ./easyrsa gen-req client1 nopass Press ENTER to confirm the common name.
Then, copy the client1.key file to the /client-configs/keys/ directory you created earlier:

cp pki/private/client1.key ~/client-configs/keys/ Next, transfer the client1.req file to your CA machine
using a secure method:

scp pki/reqs/client1.req sammy@your_CA_ip:/tmp Log in to your CA machine, navigate to the EasyRSA
directory, and import the certificate request:

ssh sammy@your_CA_IP cd EasyRSA-3.0.4/ ./easyrsa import-req /tmp/client1.req client1 Then sign the
request as you did for the server in the previous step. This time, though, be sure to specify the client
request type:

./easyrsa sign-req client client1 At the prompt, enter yes to confirm that you intend to sign the
certificate request and that it came from a trusted source:

Output Type the word 'yes' to continue, or any other input to abort.

2024/05/03 00:10 6/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

Confirm request details: yes

Again, if you encrypted your CA key, you’ll be prompted for your password here.

This will create a client certificate file named client1.crt. Transfer this file back to the server:

scp pki/issued/client1.crt sammy@your_server_ip:/tmp SSH back into your OpenVPN server and copy
the client certificate to the /client-configs/keys/ directory:

cp /tmp/client1.crt ~/client-configs/keys/ Next, copy the ca.crt and ta.key files to the /client-
configs/keys/ directory as well:

sudo cp ~/EasyRSA-3.0.4/ta.key ~/client-configs/keys/ sudo cp /etc/openvpn/ca.crt ~/client-
configs/keys/ With that, your server and client’s certificates and keys have all been generated and are
stored in the appropriate directories on your server. There are still a few actions that need to be
performed with these files, but those will come in a later step. For now, you can move on to
configuring OpenVPN on your server.

Step 5 — Configuring the OpenVPN Service

Now that both your client and server’s certificates and keys have been generated, you can begin
configuring the OpenVPN service to use these credentials.

Start by copying a sample OpenVPN configuration file into the configuration directory and then
extract it in order to use it as a basis for your setup:

sudo cp /usr/share/doc/openvpn/examples/sample-config-files/server.conf.gz /etc/openvpn/ sudo gzip -
d /etc/openvpn/server.conf.gz Open the server configuration file in your preferred text editor:

sudo nano /etc/openvpn/server.conf Find the HMAC section by looking for the tls-auth directive. This
line should already be uncommented, but if isn’t then remove the “;” to uncomment it:

/etc/openvpn/server.conf tls-auth ta.key 0 # This file is secret Next, find the section on cryptographic
ciphers by looking for the commented out cipher lines. The AES-256-CBC cipher offers a good level of
encryption and is well supported. Again, this line should already be uncommented, but if it isn’t then
just remove the “;” preceding it:

/etc/openvpn/server.conf cipher AES-256-CBC Below this, add an auth directive to select the HMAC
message digest algorithm. For this, SHA256 is a good choice:

/etc/openvpn/server.conf auth SHA256 Next, find the line containing a dh directive which defines the
Diffie-Hellman parameters. Because of some recent changes made to EasyRSA, the filename for the
Diffie-Hellman key may be different than what is listed in the example server configuration file. If
necessary, change the file name listed here by removing the 2048 so it aligns with the key you
generated in the previous step:

/etc/openvpn/server.conf dh dh.pem Finally, find the user and group settings and remove the “;” at
the beginning of each to uncomment these lines:

/etc/openvpn/server.conf user nobody group nogroup The changes you’ve made to the sample
server.conf file up to this point are necessary in order for OpenVPN to function. The changes outlined

2024/05/03 00:10 7/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

below are optional, though they too are needed for many common use cases.

(Optional) Push DNS Changes to Redirect All Traffic Through the VPN The settings above will create
the VPN connection between the two machines, but will not force any connections to use the tunnel. If
you wish to use the VPN to route all of your traffic, you will likely want to push the DNS settings to the
client computers.

There are a few directives in the server.conf file which you must change in order to enable this
functionality. Find the redirect-gateway section and remove the semicolon “;” from the beginning of
the redirect-gateway line to uncomment it:

/etc/openvpn/server.conf push “redirect-gateway def1 bypass-dhcp” Just below this, find the dhcp-
option section. Again, remove the “;” from in front of both of the lines to uncomment them:

/etc/openvpn/server.conf push “dhcp-option DNS 208.67.222.222” push “dhcp-option DNS
208.67.220.220” This will assist clients in reconfiguring their DNS settings to use the VPN tunnel for
as the default gateway.

(Optional) Adjust the Port and Protocol By default, the OpenVPN server uses port 1194 and the UDP
protocol to accept client connections. If you need to use a different port because of restrictive
network environments that your clients might be in, you can change the port option. If you are not
hosting web content on your OpenVPN server, port 443 is a popular choice since it is usually allowed
through firewall rules.

/etc/openvpn/server.conf # Optional! port 443 Oftentimes, the protocol is restricted to that port as
well. If so, change proto from UDP to TCP:

/etc/openvpn/server.conf # Optional! proto tcp If you do switch the protocol to TCP, you will need to
change the explicit-exit-notify directive’s value from 1 to 0, as this directive is only used by UDP.
Failing to do so while using TCP will cause errors when you start the OpenVPN service:

/etc/openvpn/server.conf # Optional! explicit-exit-notify 0 If you have no need to use a different port
and protocol, it is best to leave these two settings as their defaults.

(Optional) Point to Non-Default Credentials If you selected a different name during the ./build-key-
server command earlier, modify the cert and key lines that you see to point to the appropriate .crt
and .key files. If you used the default name, “server”, this is already set correctly:

/etc/openvpn/server.conf cert server.crt key server.key When you are finished, save and close the file.

After going through and making whatever changes to your server’s OpenVPN configuration are
required for your specific use case, you can begin making some changes to your server’s networking.

Step 6 — Adjusting the Server Networking Configuration

There are some aspects of the server’s networking configuration that need to be tweaked so that
OpenVPN can correctly route traffic through the VPN. The first of these is IP forwarding, a method for
determining where IP traffic should be routed. This is essential to the VPN functionality that your
server will provide.

Adjust your server’s default IP forwarding setting by modifying the /etc/sysctl.conf file:

2024/05/03 00:10 8/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

sudo nano /etc/sysctl.conf Inside, look for the commented line that sets net.ipv4.ip_forward. Remove
the “#” character from the beginning of the line to uncomment this setting:

/etc/sysctl.conf net.ipv4.ip_forward=1 Save and close the file when you are finished.

To read the file and adjust the values for the current session, type:

sudo sysctl -p Output net.ipv4.ip_forward = 1 If you followed the Debian 9 initial server setup guide
listed in the prerequisites, you should have a UFW firewall in place. Regardless of whether you use the
firewall to block unwanted traffic (which you almost always should do), for this guide you need a
firewall to manipulate some of the traffic coming into the server. Some of the firewall rules must be
modified to enable masquerading, an iptables concept that provides on-the-fly dynamic network
address translation (NAT) to correctly route client connections.

Before opening the firewall configuration file to add the masquerading rules, you must first find the
public network interface of your machine. To do this, type:

ip route | grep default Your public interface is the string found within this command’s output that
follows the word “dev”. For example, this result shows the interface named eth0, which is highlighted
below:

Output default via 203.0.113.1 dev eth0 onlink When you have the interface associated with your
default route, open the /etc/ufw/before.rules file to add the relevant configuration:

sudo nano /etc/ufw/before.rules UFW rules are typically added using the ufw command. Rules listed in
the before.rules file, though, are read and put into place before the conventional UFW rules are
loaded. Towards the top of the file, add the highlighted lines below. This will set the default policy for
the POSTROUTING chain in the nat table and masquerade any traffic coming from the VPN.
Remember to replace eth0 in the -A POSTROUTING line below with the interface you found in the
above command:

/etc/ufw/before.rules # # rules.before # # Rules that should be run before the ufw command line
added rules. Custom # rules should be added to one of these chains: # ufw-before-input # ufw-
before-output # ufw-before-forward #

START OPENVPN RULES # NAT table rules *nat :POSTROUTING ACCEPT [0:0] # Allow traffic from
OpenVPN client to eth0 (change to the interface you discovered!) -A POSTROUTING -s 10.8.0.0/8 -o
eth0 -j MASQUERADE COMMIT # END OPENVPN RULES

Don't delete these required lines, otherwise there will be errors *filter . . . Save and close the file
when you are finished.

Next, you need to tell UFW to allow forwarded packets by default as well. To do this, open the
/etc/default/ufw file:

sudo nano /etc/default/ufw Inside, find the DEFAULT_FORWARD_POLICY directive and change the
value from DROP to ACCEPT:

/etc/default/ufw DEFAULT_FORWARD_POLICY=“ACCEPT” Save and close the file when you are
finished.

Next, adjust the firewall itself to allow traffic to OpenVPN. If you did not change the port and protocol
in the /etc/openvpn/server.conf file, you will need to open up UDP traffic to port 1194. If you modified

2024/05/03 00:10 9/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

the port and/or protocol, substitute the values you selected here.

In case you forgot to add the SSH port when following the prerequisite tutorial, add it here as well:

sudo ufw allow 1194/udp sudo ufw allow OpenSSH After adding those rules, disable and re-enable
UFW to restart it and load the changes from all of the files you’ve modified:

sudo ufw disable sudo ufw enable Your server is now configured to correctly handle OpenVPN traffic.

Step 7 — Starting and Enabling the OpenVPN Service

You’re finally ready to start the OpenVPN service on your server. This is done using the systemd utility
systemctl.

Start the OpenVPN server by specifying your configuration file name as an instance variable after the
systemd unit file name. The configuration file for your server is called /etc/openvpn/server.conf, so
add @server to end of your unit file when calling it:

sudo systemctl start openvpn@server Double-check that the service has started successfully by
typing:

sudo systemctl status openvpn@server If everything went well, your output will look something like
this:

Output ● openvpn@server.service - OpenVPN connection to server

 Loaded: loaded (/lib/systemd/system/openvpn@.service; disabled; vendor
preset: enabled)
 Active: active (running) since Tue 2016-05-03 15:30:05 EDT; 47s ago
 Docs: man:openvpn(8)
 https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage
 https://community.openvpn.net/openvpn/wiki/HOWTO
Process: 5852 ExecStart=/usr/sbin/openvpn --daemon ovpn-%i --status
/run/openvpn/%i.status 10 --cd /etc/openvpn --script-security 2 --config
/etc/openvpn/%i.conf --writepid /run/openvpn/%i.pid (code=exited, sta

Main PID: 5856 (openvpn)

 Tasks: 1 (limit: 512)
 CGroup: /system.slice/system-openvpn.slice/openvpn@server.service
 └─5856 /usr/sbin/openvpn --daemon ovpn-server --status
/run/openvpn/server.status 10 --cd /etc/openvpn --script-security 2 --config
/etc/openvpn/server.conf --writepid /run/openvpn/server.pid

You can also check that the OpenVPN tun0 interface is available by typing:

ip addr show tun0 This will output a configured interface:

Output 4: tun0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UNKNOWN group default qlen 100

2024/05/03 00:10 10/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

 link/none
 inet 10.8.0.1 peer 10.8.0.2/32 scope global tun0
 valid_lft forever preferred_lft forever

After starting the service, enable it so that it starts automatically at boot:

sudo systemctl enable openvpn@server Your OpenVPN service is now up and running. Before you can
start using it, though, you must first create a configuration file for the client machine. This tutorial
already went over how to create certificate/key pairs for clients, and in the next step we will
demonstrate how to create an infrastructure that will generate client configuration files easily.

Step 8 — Creating the Client Configuration Infrastructure

Creating configuration files for OpenVPN clients can be somewhat involved, as every client must have
its own config and each must align with the settings outlined in the server’s configuration file. Rather
than writing a single configuration file that can only be used on one client, this step outlines a process
for building a client configuration infrastructure which you can use to generate config files on-the-fly.
You will first create a “base” configuration file then build a script which will allow you to generate
unique client config files, certificates, and keys as needed.

Get started by creating a new directory where you will store client configuration files within the client-
configs directory you created earlier:

mkdir -p ~/client-configs/files Next, copy an example client configuration file into the client-configs
directory to use as your base configuration:

cp /usr/share/doc/openvpn/examples/sample-config-files/client.conf ~/client-configs/base.conf Open
this new file in your text editor:

nano ~/client-configs/base.conf Inside, locate the remote directive. This points the client to your
OpenVPN server address — the public IP address of your OpenVPN server. If you decided to change
the port that the OpenVPN server is listening on, you will also need to change 1194 to the port you
selected:

~/client-configs/base.conf . . . # The hostname/IP and port of the server. # You can have multiple
remote entries # to load balance between the servers. remote your_server_ip 1194 . . . Be sure that
the protocol matches the value you are using in the server configuration:

~/client-configs/base.conf proto udp Next, uncomment the user and group directives by removing the
“;” at the beginning of each line:

~/client-configs/base.conf # Downgrade privileges after initialization (non-Windows only) user nobody
group nogroup Find the directives that set the ca, cert, and key. Comment out these directives since
you will add the certs and keys within the file itself shortly:

~/client-configs/base.conf # SSL/TLS parms. # See the server config file for more # description. It's
best to use # a separate .crt/.key file pair # for each client. A single ca # file can be used for all
clients. #ca ca.crt #cert client.crt #key client.key Similarly, comment out the tls-auth directive, as
you will add ta.key directly into the client configuration file:

~/client-configs/base.conf # If a tls-auth key is used on the server # then every client must also have

2024/05/03 00:10 11/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

the key. #tls-auth ta.key 1 Mirror the cipher and auth settings that you set in the
/etc/openvpn/server.conf file:

~/client-configs/base.conf cipher AES-256-CBC auth SHA256 Next, add the key-direction directive
somewhere in the file. You must set this to “1” for the VPN to function correctly on the client machine:

~/client-configs/base.conf key-direction 1 Finally, add a few commented out lines. Although you can
include these directives in every client configuration file, you only need to enable them for Linux
clients that ship with an /etc/openvpn/update-resolv-conf file. This script uses the resolvconf utility to
update DNS information for Linux clients.

~/client-configs/base.conf # script-security 2 # up /etc/openvpn/update-resolv-conf # down
/etc/openvpn/update-resolv-conf If your client is running Linux and has an /etc/openvpn/update-
resolv-conf file, uncomment these lines from the client’s configuration file after it has been generated.

Save and close the file when you are finished.

Next, create a simple script that will compile your base configuration with the relevant certificate,
key, and encryption files and then place the generated configuration in the ~/client-configs/files
directory. Open a new file called make_config.sh within the ~/client-configs directory:

nano ~/client-configs/make_config.sh Inside, add the following content, making sure to change
sammy to that of your server’s non-root user account:

~/client-configs/make_config.sh #!/bin/bash

First argument: Client identifier

KEY_DIR=/home/sammy/client-configs/keys OUTPUT_DIR=/home/sammy/client-configs/files
BASE_CONFIG=/home/sammy/client-configs/base.conf

cat ${BASE_CONFIG} \

 <(echo -e '<ca>') \
 ${KEY_DIR}/ca.crt \
 <(echo -e '</ca>\n<cert>') \
 ${KEY_DIR}/${1}.crt \
 <(echo -e '</cert>\n<key>') \
 ${KEY_DIR}/${1}.key \
 <(echo -e '</key>\n<tls-auth>') \
 ${KEY_DIR}/ta.key \
 <(echo -e '</tls-auth>') \
 > ${OUTPUT_DIR}/${1}.ovpn

Save and close the file when you are finished.

Before moving on, be sure to mark this file as executable by typing:

chmod 700 ~/client-configs/make_config.sh This script will make a copy of the base.conf file you
made, collect all the certificate and key files you’ve created for your client, extract their contents,
append them to the copy of the base configuration file, and export all of this content into a new client
configuration file. This means that, rather than having to manage the client’s configuration,
certificate, and key files separately, all the required information is stored in one place. The benefit of

2024/05/03 00:10 12/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

this is that if you ever need to add a client in the future, you can just run this script to quickly create
the config file and ensure that all the important information is stored in a single, easy-to-access
location.

Please note that any time you add a new client, you will need to generate new keys and certificates
for it before you can run this script and generate its configuration file. You will get some practice
using this script in the next step.

Step 9 — Generating Client Configurations

If you followed along with the guide, you created a client certificate and key named client1.crt and
client1.key, respectively, in Step 4. You can generate a config file for these credentials by moving into
your ~/client-configs directory and running the script you made at the end of the previous step:

cd ~/client-configs sudo ./make_config.sh client1 This will create a file named client1.ovpn in your
~/client-configs/files directory:

ls ~/client-configs/files Output client1.ovpn You need to transfer this file to the device you plan to use
as the client. For instance, this could be your local computer or a mobile device.

While the exact applications used to accomplish this transfer will depend on your device’s operating
system and your personal preferences, a dependable and secure method is to use SFTP (SSH file
transfer protocol) or SCP (Secure Copy) on the backend. This will transport your client’s VPN
authentication files over an encrypted connection.

Here is an example SFTP command using the client1.ovpn example which you can run from your local
computer (macOS or Linux). It places the .ovpn file in your home directory:

sftp sammy@your_server_ip:client-configs/files/client1.ovpn ~/ Here are several tools and tutorials for
securely transferring files from the server to a local computer:

WinSCP How To Use SFTP to Securely Transfer Files with a Remote Server How To Use Filezilla to
Transfer and Manage Files Securely on your VPS

Step 10 — Installing the Client Configuration

This section covers how to install a client VPN profile on Windows, macOS, Linux, iOS, and Android.
None of these client instructions are dependent on one another, so feel free to skip to whichever is
applicable to your device.

The OpenVPN connection will have the same name as whatever you called the .ovpn file. In regards to
this tutorial, this means that the connection is named client1.ovpn, aligning with the first client file
you generated.

Windows Installing

Download the OpenVPN client application for Windows from OpenVPN’s Downloads page. Choose the
appropriate installer version for your version of Windows.

Note OpenVPN needs administrative privileges to install. After installing OpenVPN, copy the .ovpn file

2024/05/03 00:10 13/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

to:

C:\Program Files\OpenVPN\config When you launch OpenVPN, it will automatically see the profile and
make it available.

You must run OpenVPN as an administrator each time it’s used, even by administrative accounts. To
do this without having to right-click and select Run as administrator every time you use the VPN, you
must preset this from an administrative account. This also means that standard users will need to
enter the administrator’s password to use OpenVPN. On the other hand, standard users can’t properly
connect to the server unless the OpenVPN application on the client has admin rights, so the elevated
privileges are necessary.

To set the OpenVPN application to always run as an administrator, right-click on its shortcut icon and
go to Properties. At the bottom of the Compatibility tab, click the button to Change settings for all
users. In the new window, check Run this program as an administrator.

Connecting

Each time you launch the OpenVPN GUI, Windows will ask if you want to allow the program to make
changes to your computer. Click Yes. Launching the OpenVPN client application only puts the applet
in the system tray so that you can connect and disconnect the VPN as needed; it does not actually
make the VPN connection.

Once OpenVPN is started, initiate a connection by going into the system tray applet and right-clicking
on the OpenVPN applet icon. This opens the context menu. Select client1 at the top of the menu
(that’s your client1.ovpn profile) and choose Connect.

A status window will open showing the log output while the connection is established, and a message
will show once the client is connected.

Disconnect from the VPN the same way: Go into the system tray applet, right-click the OpenVPN
applet icon, select the client profile and click Disconnect.

macOS Installing

Tunnelblick is a free, open source OpenVPN client for macOS. You can download the latest disk image
from the Tunnelblick Downloads page. Double-click the downloaded .dmg file and follow the prompts
to install.

Towards the end of the installation process, Tunnelblick will ask if you have any configuration files.
For simplicity, answer No and let Tunnelblick finish. Open a Finder window and double-click
client1.ovpn. Tunnelblick will install the client profile. Administrative privileges are required.

Connecting

Launch Tunnelblick by double-clicking Tunnelblick in the Applications folder. Once Tunnelblick has
been launched, there will be a Tunnelblick icon in the menu bar at the top right of the screen for
controlling connections. Click on the icon, and then the Connect menu item to initiate the VPN
connection. Select the client1 connection.

Linux Installing If you are using Linux, there are a variety of tools that you can use depending on your
distribution. Your desktop environment or window manager might also include connection utilities.

2024/05/03 00:10 14/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

The most universal way of connecting, however, is to just use the OpenVPN software.

On Ubuntu or Debian, you can install it just as you did on the server by typing:

sudo apt update sudo apt install openvpn On CentOS you can enable the EPEL repositories and then
install it by typing:

sudo yum install epel-release sudo yum install openvpn Configuring Check to see if your distribution
includes an /etc/openvpn/update-resolv-conf script:

ls /etc/openvpn Output update-resolv-conf Next, edit the OpenVPN client configuration file you
transfered:

nano client1.ovpn If you were able to find an update-resolv-conf file, uncomment the three lines you
added to adjust the DNS settings:

client1.ovpn script-security 2 up /etc/openvpn/update-resolv-conf down /etc/openvpn/update-resolv-
conf If you are using CentOS, change the group directive from nogroup to nobody to match the
distribution’s available groups:

client1.ovpn group nobody Save and close the file.

Now, you can connect to the VPN by just pointing the openvpn command to the client configuration
file:

sudo openvpn –config client1.ovpn This should connect you to your VPN.

iOS Installing

From the iTunes App Store, search for and install OpenVPN Connect, the official iOS OpenVPN client
application. To transfer your iOS client configuration onto the device, connect it directly to a
computer.

The process of completing the transfer with iTunes is outlined here. Open iTunes on the computer and
click on iPhone > apps. Scroll down to the bottom to the File Sharing section and click the OpenVPN
app. The blank window to the right, OpenVPN Documents, is for sharing files. Drag the .ovpn file to
the OpenVPN Documents window.

iTunes showing the VPN profile ready to load on the iPhone

Now launch the OpenVPN app on the iPhone. You will receive a notification that a new profile is ready
to import. Tap the green plus sign to import it.

The OpenVPN iOS app showing new profile ready to import

Connecting

OpenVPN is now ready to use with the new profile. Start the connection by sliding the Connect button
to the On position. Disconnect by sliding the same button to Off.

Note The VPN switch under Settings cannot be used to connect to the VPN. If you try, you will receive
a notice to only connect using the OpenVPN app. The OpenVPN iOS app connected to the VPN

Android Installing

2024/05/03 00:10 15/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

Open the Google Play Store. Search for and install Android OpenVPN Connect, the official Android
OpenVPN client application.

You can transfer the .ovpn profile by connecting the Android device to your computer by USB and
copying the file over. Alternatively, if you have an SD card reader, you can remove the device’s SD
card, copy the profile onto it and then insert the card back into the Android device.

Start the OpenVPN app and tap the menu to import the profile.

The OpenVPN Android app profile import menu selection

Then navigate to the location of the saved profile (the screenshot uses /sdcard/Download/) and select
the file. The app will make a note that the profile was imported.

The OpenVPN Android app selecting VPN profile to import

Connecting

To connect, simply tap the Connect button. You’ll be asked if you trust the OpenVPN application.
Choose OK to initiate the connection. To disconnect from the VPN, go back to the OpenVPN app and
choose Disconnect.

The OpenVPN Android app ready to connect to the VPN

Step 11 — Testing Your VPN Connection (Optional)

Note: This method for testing your VPN connection will only work if you opted to route all your traffic
through the VPN in Step 5.

Once everything is installed, a simple check confirms everything is working properly. Without having
a VPN connection enabled, open a browser and go to DNSLeakTest.

The site will return the IP address assigned by your internet service provider and as you appear to the
rest of the world. To check your DNS settings through the same website, click on Extended Test and it
will tell you which DNS servers you are using.

Now connect the OpenVPN client to your server’s VPN and refresh the browser. A completely different
IP address (that of your VPN server) should now appear, and this is how you appear to the world.
Again, DNSLeakTest’s Extended Test will check your DNS settings and confirm you are now using the
DNS resolvers pushed by your VPN.

Step 12 — Revoking Client Certificates

Occasionally, you may need to revoke a client certificate to prevent further access to the OpenVPN
server.

To do so, navigate to the EasyRSA directory on your CA machine:

cd EasyRSA-3.0.4/ Next, run the easyrsa script with the revoke option, followed by the client name
you wish to revoke:

2024/05/03 00:10 16/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

./easyrsa revoke client2 This will ask you to confirm the revocation by entering yes:

Output Please confirm you wish to revoke the certificate with the following subject:

subject=

 commonName = client2

Type the word 'yes' to continue, or any other input to abort.

Continue with revocation: yes

After confirming the action, the CA will fully revoke the client’s certificate. However, your OpenVPN
server currently has no way to check whether any clients’ certificates have been revoked and the
client will still have access to the VPN. To correct this, create a certificate revocation list (CRL) on your
CA machine:

./easyrsa gen-crl This will generate a file called crl.pem. Securely transfer this file to your OpenVPN
server:

scp ~/EasyRSA-3.0.4/pki/crl.pem sammy@your_server_ip:/tmp On your OpenVPN server, copy this file
into your /etc/openvpn/ directory:

sudo cp /tmp/crl.pem /etc/openvpn Next, open the OpenVPN server configuration file:

sudo nano /etc/openvpn/server.conf At the bottom of the file, add the crl-verify option, which will
instruct the OpenVPN server to check the certificate revocation list that we’ve created each time a
connection attempt is made:

/etc/openvpn/server.conf crl-verify crl.pem Save and close the file.

Finally, restart OpenVPN to implement the certificate revocation:

sudo systemctl restart openvpn@server The client should no longer be able to successfully connect to
the server using the old credential.

To revoke additional clients, follow this process:

Revoke the certificate with the ./easyrsa revoke client_name command Generate a new CRL Transfer
the new crl.pem file to your OpenVPN server and copy it to the /etc/openvpn directory to overwrite
the old list. Restart the OpenVPN service. You can use this process to revoke any certificates that
you’ve previously issued for your server.

Conclusion You are now securely traversing the internet protecting your identity, location, and traffic
from snoopers and censors. If at this point you no longer need to issue certificates, it’s recommended
that you turn off your CA machine or otherwise disconnect it from the internet until you need to add
or revoke certificates. This will help to prevent attackers from gaining access to your VPN.

To configure more clients, you only need to follow steps 4 and 9-11 for each additional
device. To revoke access to clients, just follow step 12.

3072b0699d3add2e0d0f31b97397dd68302c8842 jellingwood By Mark Drake and Justin Ellingwood

2024/05/03 00:10 17/17 How To Set Up an OpenVPN Server on Debian 9

Bernard's Wiki - https://wiki.condrau.com/

From:
https://wiki.condrau.com/ - Bernard's Wiki

Permanent link:
https://wiki.condrau.com/deb9:openvpndigitalocean

Last update: 2023/05/12 16:27

https://wiki.condrau.com/
https://wiki.condrau.com/deb9:openvpndigitalocean

	[How To Set Up an OpenVPN Server on Debian 9]
	How To Set Up an OpenVPN Server on Debian 9
	Introduction
	Prerequisites
	Step 1 — Installing OpenVPN and EasyRSA
	Step 2 — Configuring the EasyRSA Variables and Building the CA
	Step 3 — Creating the Server Certificate, Key, and Encryption Files
	Step 4 — Generating a Client Certificate and Key Pair
	Step 5 — Configuring the OpenVPN Service
	Step 6 — Adjusting the Server Networking Configuration
	Step 7 — Starting and Enabling the OpenVPN Service
	Step 8 — Creating the Client Configuration Infrastructure
	Step 9 — Generating Client Configurations
	Step 10 — Installing the Client Configuration
	Step 11 — Testing Your VPN Connection (Optional)
	Step 12 — Revoking Client Certificates

